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Abstract
Motivation: We present techniques for increasing the
speed of sequence analysis using scoring matrices. Our
techniques are based on calculating, for a given scoring
matrix, the quantile function, which assigns a probability,
or p, value to each segmental score. Our techniques
also permit the user to specify a p threshold to indicate
the desired trade-off between sensitivity and speed for a
particular sequence analysis. The resulting increase in
speed should allow scoring matrices to be used more
widely in large-scale sequencing and annotation projects.
Results: We develop three techniques for increasing
the speed of sequence analysis: probability filtering,
lookahead scoring, and permuted lookahead scoring. In
probability filtering, we compute the score threshold that
corresponds to the user-specified p threshold. We use the
score threshold to limit the number of segments that are
retained in the search process. In lookahead scoring, we
test intermediate scores to determine whether they will
possibly exceed the score threshold. In permuted looka-
head scoring, we score each segment in a particular order
designed to maximize the likelihood of early termination.
Our two lookahead scoring techniques reduce substan-
tially the number of residues that must be examined. The
fraction of residues examined ranges from 62 to 6%,
depending on the p threshold chosen by the user.

These techniques permit sequence analysis with scoring
matrices at speeds that are several times faster than
existing programs. On a database of 12 177 alignment
blocks, our techniques permit sequence analysis at a speed
of 225 residues/s for a p threshold of 10−6, and 541
residues/s for a p threshold of 10−20.

In order to compute the quantile function, we may
use either an independence assumption or a Markov
assumption. We measure the effect of first- and second-
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order Markov assumptions and find that they tend to
raise the p value of segments, when compared with the
independence assumption, by average ratios of 1.30 and
1.69, respectively. We also compare our technique with
the empirical 99.5th percentile scores compiled in the
BLOCKSPLUS database, and find that they correspond on
average to a p value of 1.5 × 10−5.
Availability: The techniques described above are imple-
mented in a software package called EMATRIX. This
package is available from the authors for free academic
use or for licensed commercial use. The EMATRIX
set of programs is also available on the Internet at
http://motif.stanford.edu/ematrix.

Introduction
Large-scale projects in sequencing and annotation, includ-
ing the many genome projects now underway, require in-
creasing speed in sequence analysis. Speed is important
not only because of the increasing numbers of query se-
quences, but also because of the growing size of pattern
databases that are used to match queries. In addition, se-
quence analyses are most informative when they attach
probability values to results, so that accurate inferences
may be drawn. In this paper, we develop techniques for an-
alyzing sequences rapidly and probabilistically using scor-
ing matrices. Our techniques are implemented in a pack-
age of computer programs called EMATRIX, which ana-
lyzes sequences several times more quickly than existing
programs.

Our approach is novel mainly due to allowing the
user to trade off speed and sensitivity explicitly by
specifying a probability, or p, threshold. This threshold
indicates the desired level of statistical significance for
a particular analysis. A low p threshold corresponds
to a highly specific analysis, limited to those hits that
are statistically very significant. Such an analysis should
produce relatively few false positives, but may miss more
distant sequence relationships. On the other hand, if
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the user specifies a high p threshold, he can analyze a
particular sequence with high sensitivity. In our approach,
the trade-off occurs because specific analyses can be
performed at relatively high speed, whereas sensitive
analyses require more time.

For example, at a p threshold of 10−6, our program
attains speeds of 225 residues/s; at a p threshold of 10−20,
the speed rises to 541 residues/s. (These speeds are based
on a database of 12 177 alignment blocks, and would
change linearly with the number of blocks.) In this paper,
we show that our program is several times faster than
other programs that use scoring matrices, such as BLIMPS
(Wallace and Henikoff, 1992) and BLOCKSEARCH
(Fuchs, 1993, 1994). Accordingly, we envision that our
approach can be used successfully for a wide range
of applications: both for genome-wide analyses—which
require both high specificity and high speed—and for
individual sequence analyses—which usually call for
more sensitivity at the expense of speed.

Our program EMATRIX performs sequence analysis
using scoring matrices, which are used widely in bioin-
formatics. A scoring matrix represents a nucleic acid or
protein segment in a family of related sequences; other
terms for this type of construct include weight matrices
(Staden, 1990; Stormo and Hartzell, 1989), profiles
(Gribskov et al., 1987), and position-specific scoring
matrices (Henikoff, 1996). A scoring matrix S represents
a gapless local alignment of a sequence family. The
alignment consists of several contiguous positions; each
position is represented by a column in the scoring matrix.
In turn, each column j consists of a vector of scores
S j (a), one score for each possible residue a. (We use the
term ‘residue’ to refer to an amino acid or nucleotide,
depending on whether we are analyzing protein or nucleic
acid sequences, respectively.)

A scoring matrix can be used in sequence analysis
by sliding the matrix along the sequence and computing
segmental scores. Each segmental score is simply the
sum of the appropriate matrix entries, with each residue
corresponding to a score in a column of the matrix.
Specifically, for a sequence consisting of the residues
a1, . . . , aL , and a segment of width J beginning at
position k (1 ≤ k ≤ L − J + 1), the segmental score
is

T =
J∑

j=1

S j (ak+ j−1). (1)

Intuitively, a higher segmental score indicates a greater
likelihood that the sequence matches the given scoring
matrix. The precise nature of this relationship is a key
issue in this paper, and, in fact, the explicit computation of
this relationship makes our speed-up techniques possible.

Several databases of alignment blocks are now avail-
able, including BLOCKS (Henikoff and Henikoff, 1991),

PRINTS (Attwood and Beck, 1994), PFAM (Bateman et
al., 1999), PRODOM (Corpet et al., 1999) and DOMO
(Gracy and Argos, 1998). These databases make it possi-
ble to identify the function of a sequence by comparing
it against every alignment block. To do this with scoring
matrices, each alignment block must first be converted
into a scoring matrix. Many methods for this conversion
have been developed (Brown et al., 1993; Gribskov et al.,
1987; Henikoff and Henikoff, 1996; Henikoff et al., 1995;
Lawrence et al., 1993; Sjölander et al., 1996; Tatusov et
al., 1994; Wu et al., 1999). For a given alignment block,
each conversion method produces a slightly different
scoring matrix. Thus, conversion methods may be judged
based on their ability to represent accurately the alignment
block and the underlying family of sequences. In fact, one
of the contributions of the EMATRIX project, described
elsewhere in (Wu et al., 1999), has been to develop a
conversion method based on minimal-risk estimation, and
to show that the resulting minimal-risk scoring matrices
are more accurate than other types of scoring matrices.

However, in this paper, we focus on a different aspect
of the EMATRIX project: our techniques for increasing
the speed of sequence analysis. These techniques can
be applied to any scoring matrix, regardless of how it
was constructed, and are therefore independent of the
conversion method. Therefore, in this paper, we will not
discuss issues of scoring-matrix construction, but assume
that we have converted a set of alignment blocks to a set
of scoring matrices. Once we have constructed the scoring
matrices, we have essentially determined the segmental
scores for any given sequence.

To give those scores a probabilistic interpretation, we
need to compute the relationship between segmental
scores and probability, or p, values. These p values
represent the probability of obtaining the given score in a
random segment. Our model of randomness can be defined
by using either an independence assumption or a Markov
assumption. In the independence assumption, which has
been used most often, we assume that residue frequencies
at each position in a random segment are independent of
other positions. In contrast, in the Markov assumption, we
assume that residue frequencies at each position depend
on the residues at one or more neighboring positions. We
may apply each assumption to a given scoring matrix to
compute its relationship between segmental scores and p
values. This relationship is called a quantile function.

A major contribution of this paper is to show that the
quantile function can be used in conjunction with the
user-specified p threshold to speed up sequence analysis.
For each scoring matrix, this p threshold corresponds to
a score threshold, which we can then exploit to achieve
faster speeds. We have developed three techniques for this
type of speed-up: (1) significance filtering, (2) lookahead
scoring, and (3) permuted lookahead scoring.
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In significance filtering, we need only store those
segments and scoring matrices where the segmental score
exceeds the score threshold for that matrix. This technique
speeds up sequence analysis by eliminating the need to
store and sort large numbers of potential hits.

In lookahead scoring, we add a test step to significance
filtering. For each intermediate score of a segment, we test
whether the final score could possibly exceed the score
threshold. If we can predict that a segment will fail to
achieve the score threshold, then we can terminate scoring
early and proceed to the next segment. To implement
lookahead scoring, we compute a set of intermediate score
thresholds for each scoring matrix, one threshold for each
column.

Permuted lookahead scoring is similar to lookahead
scoring, except that we score each segment by evaluating
the residues in a particular order. The order is designed
to maximize the likelihood that we will terminate scoring
early. The earlier we can terminate the scoring process, the
faster we can perform sequence analysis.

Methods
Quantile function
To perform significance filtering, we must first relate each
score T to its p value. This relationship is called the quan-
tile function, which gives the score that corresponds to a
given p value. We compute the quantile function through
its inverse, the complementary cumulative distribution
function (complementary CDF). In turn, we compute the
complementary CDF by performing a summation over the
probability mass function (PMF).

Let us denote the segmental score by the random
variable X , and the PMF of X by f (x). Then, for a
particular segmental score T , the p value is

G(t) = Pr{X ≥ t} =
∞∑

x=t

f (x)dx (2)

The value of G(T ) is the probability of observing a score
that is greater than or equal to the observed score T , under
the null hypothesis. The null hypothesis in our case is that
the segment is random.

Several methods for computing the PMF have been
proposed. One method is to apply the scoring matrix
empirically to a database of random sequences, such as
SWISSPROT (Bairoch and Apweiler, 1996), and then
tabulate the relative frequency of scores. This method
is used by the curators of the BLOCKS database. Each
alignment block in the BLOCKS database reports a
score at the 99.5th percentile, where the percentiles are
tabulated by taking the maximum segmental score for each
sequence.

Another method is to compute the probability re-
cursively through each column of the scoring matrix

(McLachlan, 1983; Staden, 1989; Tatusov et al., 1994).
In this method, each position in a random sequence is
represented by a background frequency vector

q = 〈q(1), . . . , q(|A|)〉
where A is the set of possible residues. The background
frequencies can be obtained from the relative frequencies
of residues in a large sequence database. We then compute
the PMF recursively, column by column:

f (0)(x) = δ(x) (3)

f ( j)(x) =
∑

a

q(a) f ( j−1)(x − S j (a))

j = 1, . . . , J (4)

f (x) = f (J )(x) (5)

where the function δ(x) is equal to 1.0 for x = 0 and zero
otherwise. Essentially, we begin with the entire probability
mass at score x = 0. Then, at each column j , we obtain a
revised version of the PMF, f ( j)(x), based on the previous
PMF. We look back for scores in the previous PMF that
could generate x ; these scores are simply (x − S j (a))

for all possible residues a. The final iteration yields the
desired PMF f (x).

This method assumes that positions in a random se-
quence are independent and identically distributed. We
now extend the recursive PMF method to handle random
sequences under a Markov assumption, where the proba-
bility distribution at each position depends on the context
of previous positions. In the Markov assumption, each
position is represented by a contextual frequency vector
qC , with elements qC (a), where C is a certain number
c of upstream residues. For example, in a second-order
Markov model, the context C would consist of the two
residues upstream of the given position. The contextual
frequency vectors qC can be compiled by tabulating
oligomers in a large sequence database.

Under the Markov assumption, we distribute the recur-
sive process over all possible contexts. We maintain |A|c
distributions at each stage j , with the exception that the
first few stages, for j < c, will have only |A| j distribu-
tions. Each distribution corresponds to a different possible
substring C . Let us denote the left shift operation by ‘sh’,
so that ‘sh(C, a)’ contains the rightmost (c−1) characters
in the concatenation of C and a. Then, we can compute the
PMF using the following recursion:

f (0)(x) = δ(x) (6)

f ( j)
sh(C,a)(x) =

∑
C

∑
a

qC (a) f ( j−1)
C (x − S j (a)),

j = 1, . . . , J (7)

f (x) =
∑

C

f (J )
C (x) (8)
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At each stage j of the recursion, the function f ( j)
C is not a

PMF, because its total mass will be less than 1. However,
the sum of the functions f ( j)

C over all C will contain total
mass of 1. The PMF is represented by summing over all
contexts C .

Once we have the PMF f (x), we can compute the
complementary CDF G(T ) by summation [equation (2)].
Then, we have the quantile function, which is the inverse
function, G−1(p). Given a p threshold p∗, the quantile
function generates a score threshold T ∗ = �G−1(p∗)�.
Because we have computed G(T ) for all possible segmen-
tal scores, we can determine the score threshold readily
for any given p threshold.

Significance filtering
In significance filtering, we use the quantile function
for each scoring matrix to convert the user-specified p
threshold p∗ into a score threshold T ∗. Then, we retain
a segment only if its score is equal to or exceeds T ∗ and
discard it otherwise.

To implement significance filtering, we would like
to store the quantile function for each scoring matrix.
However, it would be prohibitively expensive to store the
quantile function for all values of p∗. Therefore, we store
the quantile function only at certain intervals. Our current
implementation stores the quantile function at multiples of
10 from 10−1 through 10−40.

Figure 1 shows the quantile function for an example
scoring matrix, stored at these intervals. Suppose the user
specifies a p threshold of 10−6. Then, the corresponding
score threshold is −148. If we desire a more specific
sequence analysis, at p∗ = 10−10, the score threshold
rises to T ∗ = 182, thereby allowing fewer segments to
match.

If a segment does exceed the score threshold, indicating
a positive hit, we would like to report its p value. For
this task, we need the complementary CDF G(T ), so
we should be able to use its inverse, the stored quantile
function. However, because we have stored the quantile
function only at certain intervals, we must perform
interpolation. To determine the p value of a given score
T , we use log-linear interpolation on the stored points T0
and T1:

G(T ) ≈ exp

[
log G(T0) + T − T0

T1 − T0
(log G(T1)

− log G(T0))

]
(9)

Lookahead scoring
With significance filtering, we compare the final segmen-
tal score with a score threshold T ∗. However, it is possible
to evaluate the acceptability of a segment midway through
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Fig. 1. Quantile function for a scoring matrix. The scoring matrix
was derived from block 21B (kringle domain proteins) from
BLOCKSPLUS 11.0. This block contains 32 protein segments, each
having a width of 18 amino acids. The scoring matrix was computed
by the square-error minimal-risk method described in (Wu et al.,
1999), using the BLOSUM62 substitution matrix. Quantiles were
computed using a first-order Markov assumption. Two points are
highlighted with dashed lines, corresponding to p thresholds of
10−6 (score = −148) and 10−10 (score = 182).

its computation. In lookahead scoring, we compare inter-
mediate scores with intermediate score thresholds. We can
derive intermediate score thresholds by knowing the max-
imum possible score for the remainder of the segment.
If the intermediate score is less than the required thresh-
old at any point, then we can terminate the scoring pro-
cess early. The idea behind lookahead scoring is similar
in spirit to the A∗ algorithm for search problems (Hart et
al., 1968), although here we are trying to find satisfactory
scores rather than optimal scores.

The intermediate score threshold at column j is based on
the maximum possible score in columns ( j + 1) through
J . We call this quantity the maximal remainder score:

Z ( j) =
J∑

k= j+1

max
a

Sk(a) (10)

which is a summation of the maximum scores in
columns ( j + 1) through J . This quantity can be pre-
computed and stored for each scoring matrix. Then, the
intermediate score threshold at column j is (T ∗ − Z ( j)).
At each column j , the intermediate score T ( j) must
exceed this quantity. If this lookahead condition fails, we
can terminate scoring.

Note that as T ∗ increases, the intermediate score thresh-
olds all increase in parallel, making it more likely that the
lookahead condition fails earlier in the process. This con-
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Fig. 2. Intermediate scores and score thresholds. Intermediate score
thresholds are shown for block 21B from BLOCKSPLUS 11.0,
for p thresholds of 10−10 and 10−6. These two sets of thresholds
differ only in their starting score thresholds of 182 and −148 in
their rightmost column, obtained from Figure 1. Intermediate score
thresholds are shown both for the standard ordering of columns
in the scoring matrix (solid curves) and for a permuted ordering
(dashed curves). The expected intermediate scores are also shown,
with the crossover points circled. For a p threshold of 10−6, the
crossover points occur at columns 10.0 (standard ordering) and 7.8
(permuted ordering). For 10−10, crossover occurs at columns 6.5
and 4.7, respectively.

cept is shown in Figure 2, which shows two parallel sets
of intermediate score thresholds, corresponding to values
of T ∗ for p∗ = 10−6 and p∗ = 10−10. The figure also
shows the expected scores along the scoring matrix. The
lookahead condition fails when the two curves cross, al-
lowing early termination of scoring. As the value of T ∗
increases, the average crossing point moves leftward, re-
sulting in earlier terminations.

At first glance, it would appear that the additional cost
of lookahead scoring is one subtraction per column (to
compute the intermediate score threshold (T ∗ − Z ( j)))
and one comparison operation per column (to compare
the intermediate score with the threshold). However, we
can reduce this cost to just the comparison operation
by subtracting T ∗ from the intermediate scores and
comparing that value with −Z ( j). This subtraction can
essentially be performed by starting the segmental scoring
process with −T ∗. Then, if the intermediate scores all
exceed their respective thresholds, meaning a positive hit,
we can correct the segmental score by adding back T ∗.

Permuted lookahead scoring
Previously, we have used the values in scoring matrices
sequentially from position 1 through position J . However,

we may evaluate the residues in a given segment in any
order. With lookahead scoring, the sooner we can reject
a segment, the better. Therefore, we investigate the possi-
bility of evaluating scoring matrices in a permuted order,
giving rise to the strategy of permuted lookahead scoring.

Suppose that we have a permutation π = 〈π1, . . . , πJ 〉,
where π j indicates the position to be evaluated at step j .
Then, we simply compute both the intermediate scores and
the intermediate score thresholds in this order. As before,
if the intermediate score is less than the corresponding
threshold, we can terminate scoring early.

It would seem that the additional cost of the permuted
lookahead scoring, compared with standard lookahead
scoring, would be two look-ups in the permutation π , one
to find the right residue in the segment and one to find
the right entry in the scoring matrix. However, we can
eliminate the latter step by storing the scoring matrix in
permuted order.

The issue then remains of how to compute the permu-
tation π . Each column in a scoring matrix has a maximal
score and an expected score, respectively:

M j = max
a

S j (a) (11)

E j =
∑

a

S j (a)qa (12)

where the values of q(a) are the background frequencies
discussed previously. The key statistic should be the
difference between these scores. If the expected score for a
column is low relative to the maximal score, then it is more
likely that the column will cause the lookahead condition
to fail. Because we would like to know as early as possible
whether the segment will fail to achieve the desired score
threshold, we should order the columns according to their
differences in expected and maximal scores, (E j − M j ).
We compute this difference for each column in the scoring
matrix and create the permutation by ordering the columns
from largest difference to smallest difference.

As Figure 2 (dashed curves) shows, this permutation
causes the crossover point to move earlier, from column
6.4 to 4.7 for p∗ = 10−10, and from column 10.0 to 7.8
for p∗ = 10−6. This difference contributes somewhat to
faster sequence analysis, by an amount that we quantify in
the Results section.

Implementation
The auxiliary information needed for the above techniques
can be computed for each scoring matrix in advance,
because databases of alignment blocks change relatively
infrequently. We pre-compute and store the auxiliary
information as part of the process of converting a set
of alignment blocks into a set of scoring matrices. The
EMATRIX package is designed to perform both the
conversion and pre-analysis steps, using the programs
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EMATRIX-MAKER and EMATRIX-BUILD, respec-
tively. The EMATRIX package also includes software
for performing the actual sequence analysis, in the pro-
gram EMATRIX-SEARCH. If the user has a particular
alignment block of interest, he can use the program
EMATRIX-MAKER to create a scoring matrix, and the
program EMATRIX-SCAN to compare the scoring matrix
against a set of sequences, such as SWISSPROT (Bairoch
and Apweiler, 1996).

The EMATRIX package is written in the programming
languages C and Perl. The EMATRIX-BUILD program
runs EMATRIX-MAKER on a database of alignment
blocks to create a database of permuted scoring matrices.
This program also computes, for each scoring matrix, a
set of score thresholds for various p thresholds and a set
of maximal remainder scores, one for each column in the
matrix. These data are converted into binary files for fast
input. Each alignment block also has a brief description,
and these descriptions are stored in a separate binary file,
along with pointers, so that descriptions may be accessed
randomly. This implementation detail fits well with our
significance filtering strategy, which requires that only a
small fraction of descriptions be read, thereby making
random access useful.

The conversion process of EMATRIX-BUILD requires
several hours for current databases, largely because of the
time needed to compute the complementary CDF for each
scoring matrix. This time is lengthened considerably by
the use of higher-order Markov assumptions, because the
computing time increases roughly as O(|A|c), where c is
the order of the Markov process. For large alphabets A,
such as the set of 20 amino acids, this computational be-
havior can be limiting. For example, computing the com-
plementary CDFs for all blocks in the current BLOCKS-
PLUS database requires 76 min under the independence
assumption. Under the first-order Markov assumption, the
computation requires 17 h. The second-order assumption
would take approximately 20 times longer, and would be
prohibitively expensive to compute for large databases.

Once computed, however, the new databases can be
used repeatedly for rapid sequence analysis. Because
standard databases of alignment blocks exist, we can
apply EMATRIX-BUILD to produce standard databases
of scoring matrices and auxiliary data structures. The
standard EMATRIX databases are updated in sync with
new releases of alignment blocks. Currently, the standard
EMATRIX database is kept in sync with BLOCKSPLUS
(Henikoff et al., 1999), which contains alignment blocks
taken from the BLOCKS, PRINTS, PFAM, DOMO,
and PRODOM databases. Non-standard or specialized
databases of alignment blocks can also be processed with
EMATRIX-BUILD, and the resulting scoring matrices can
be used by EMATRIX-SEARCH to perform sequence
analysis.

Results
We perform four experiments to quantify the efficacy
of our techniques. First, we assess the speed of our
techniques and compare them with one another, as well
as with existing programs. Second, we analyze why
lookahead scoring is so effective. Third, we compare
the probability distributions obtained using Markov-based
computations versus independence-based computations.
Finally, we give a probabilistic interpretation to existing
empirical methods for scoring matrix analysis.

Speed of sequence analysis
In this test, we compiled sequence analysis programs
on a Silicon Graphics O2 machine with an R10000
processor at 175 MHz, using 32-bit, level-2 optimization.
We measured the total processing time required to analyze
all 100 sequences, using the user CPU time reported by
the Unix time command. The accuracy of this timing
procedure can be estimated roughly from repeated runs
of EMATRIX-SEARCH. We used 36 measurements in
this experiment (described later) for which the running
time was essentially independent of the p threshold.
We obtained a standard error of 0.26 s compared with
a mean of 370.4 s, which suggests a relative error of
approximately 0.1%.

We selected 100 sequences at random from the SWISS-
PROT database, version 36. These sequences contained a
total of 63 496 amino acids, or an average of 635 amino
acids per sequence. For sequence analysis, we used the
BLOCKSPLUS database, version 11.0 (November 1998),
which contains 12 177 alignment blocks. The width of the
alignment blocks varies from 5 to 55 positions, with an
average of 24.2 positions.

We tested the BLIMPS program, version 3.2.5 (January
1999), previously called PATMAT (Wallace and Henikoff,
1992). This program required a total of 4001.2 s to analyze
the sequences, or 15.9 residues/s. We performed the same
analysis using the BLOCKSEARCH program (Fuchs,
1993, 1994), version 2.1 (December 1993). This program
required a total of 582.4 s to analyze the sequences, or
109.0 residues/s.

We then analyzed the same 100 sequences using the
EMATRIX-SEARCH program, under the three methods
of significance filtering, lookahead scoring, and permuted
lookahead scoring. We selected 36 p thresholds from 10−5

to 10−40 at multiples of 10. With significance filtering,
the 36 different p thresholds had little effect on speed.
(Also, as we noted previously, these CPU times allowed
us to estimate the precision of our timing procedure).
Significance filtering required 370.4 s (171.4 residues/s)
to analyze all 100 sequences.

In contrast, the speed of lookahead scoring and per-
muted lookahead scoring depended greatly on the p
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Fig. 3. Speed of sequence analysis as a function of p threshold.
For all programs, speeds were measured on a set of 100 randomly
selected protein sequences, containing a total of 63 496 residues,
against the 12 177 blocks in BLOCKSPLUS 11.0. For significance
filtering, lookahead scoring, and permuted lookahead scoring,
measurements were performed on p thresholds ranging from 10−5

to 10−40 at multiples of 10. The dashed line shows an asymptotic
level of 4.1%, derived from the average width of 24.2 over all
alignment blocks in BLOCKSPLUS 11.0.

threshold. For lookahead scoring, the total time ranged
from 342.9 s (185.2 residues/s) for p∗ = 10−5, to
62.3 s (1019.2 residues/s) for p∗ = 10−40. For permuted
lookahead scoring, the total time ranged from 305.2 s
(208.0 residues/s) to 58.9 s (1078.0 residues/s) for
p∗ = 10−40. Over all p thresholds, permuted lookahead
scoring was between 5.8 and 20.6% faster than sequential
lookahead scoring, with an average speed increase of
15.6%. The total set of speeds is plotted in Figure 3.

Analysis of lookahead scoring
To understand why lookahead scoring and permuted
lookahead scoring are so powerful, we performed further
analysis of these techniques. Both lookahead scoring
methods allow our program to examine only a fraction of
the residues. We therefore analyzed the savings afforded
by the lookahead scoring methods, in terms of the fraction
of residues examined.

We modified our EMATRIX-SEARCH program to
report the total number of residues that it examined for
each scoring matrix, as well as the potential number of
residues that it would have examined without lookahead
scoring. We measured the results for p thresholds from
10−5 to 10−40. For the input sequence, we concatenated
the 100 sequences used in our previous analysis into a
single sequence.

The analysis is shown in Figure 4. For each p threshold,
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Fig. 4. Efficiency of lookahead scoring. The graph shows the
fraction of residues examined, where the fraction is determined
relative to the number of residues examined by significance
filtering. The performance of both lookahead scoring and permuted
lookahead scoring were analyzed, on a set of 100 randomly selected
protein sequences. Measurements were performed at probability
thresholds ranging from 10−5 to 10−40 at multiples of 10.

the figure shows the fraction of residues examined, aver-
aged over all scoring matrices, for the lookahead scoring
and permuted lookahead scoring techniques. Lookahead
scoring examines only 62% of the residues at a p thresh-
old of 10−5; 40% at 10−10; and 17% at 10−20. Permuted
lookahead scoring examines even fewer residues: 49, 30,
and 13%, respectively. Both methods reach an asymptotic
limit as p∗ becomes smaller. This limit occurs because the
methods must evaluate at least one residue in each segment
of length J , whereas significance filtering evaluates all J
residues. The scoring matrices in BLOCKSPLUS have an
average width of 24.2 residues, meaning that the savings
must reach an asymptotic limit of 1/24.2, or 4.1%.

Markov computation of probability values
In this paper, we have introduced a method for comput-
ing the probability mass function and quantile function
under a Markov assumption. Our method extends existing
methods for calculating the PMF under an independence
assumption. The independence and Markov assumptions
yield different complementary CDFs, and hence differ-
ent p values for a given score. We performed an anal-
ysis to compare the results of using a first-order and a
second-order Markov assumption against an independence
assumption.

We chose 100 blocks at random from the BLOCKS-
PLUS database. For each block, we computed the PMF
and the corresponding complementary CDF under the
independence, first-order, and the second-order assump-
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tions. In these computations, we used the marginal
frequencies q(a) and the first-order and the second-order
Markov frequencies qC (a) observed over all sequences in
SWISSPROT, version 36.

In order to compare the methods, we compared p values
between the Markov and the independence assumptions by
composing the quantile function under the independence
assumption with the complementary CDF under the
Markov assumption. In other words, the relationship
between p values was given by

p′ = GMarkov(G
−1
indep(p))

where G−1
indep is the quantile function under the indepen-

dence assumption and GMarkov is the complementary
CDF under the Markov assumption. We used p values
ranging from 10−5 to the smallest p value found for that
scoring matrix. We computed the difference between
the logarithms of the Markov-based p values and the
independence-based p values.

For the first-order Markov assumption, the difference
in log p values ranged from −0.168 to 0.942, with an
average of 0.115. For the second-order Markov assump-
tion, the difference in log p values ranged from −0.275
to 1.683, with an average of 0.229. The averages are pos-
itive, indicating that Markov assumptions tend to raise the
p value of a given score. In other words, Markov methods
tend to evaluate segments as being less significant, com-
pared with the independence method. The average differ-
ences in log p values correspond to multiples of 1.30 and
1.69 in p values. The distributions of differences in log p
values are shown in Figure 5.

Probabilistic interpretation of empirical scores
Our methods for assessing segmental scores enable us to
give a probabilistic interpretation to existing empirical
methods for scoring matrix analysis. The empirical
approach is embodied in the BLOCKSPLUS database,
where each alignment block is labeled with its 99.5th
percentile score over all sequences in SWISSPROT.

The BLOCKSPLUS database essentially provides only
a single quantile score, out of an entire distribution of
scores. In addition, the semantics of empirical quantile
scores are different from that of our quantile scores.
The empirical distribution is computed by tabulating
the maximum score for each sequence in SWISSPROT.
Therefore, an extreme value distribution (Castillo, 1988)
is inherent to the empirical scores, and this distribution
depends on the distribution of lengths of sequences in
SWISSPROT. On the other hand, our quantile scores are
based on the application of a scoring matrix to a single
segment, and therefore represent the original distribution,
before any consideration of extreme values.

With these differences in mind, we performed a
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Fig. 5. Comparison of probability values under Markov and
independence assumptions. The graph shows the distribution of
the difference in log p values between Markov assumptions
and the independence assumption. The comparison of p values
was performed by composing the quantile function from the
independence assumption with the complementary CDF of the
Markov assumption. The distribution is shown as a smoothed
density function, using a Gaussian window with a standard error
of 0.025.

probabilistic analysis of the empirically derived 99.5th
percentile scores in BLOCKSPLUS. First, we computed
the scoring matrices corresponding to the alignment
blocks in BLOCKSPLUS. These scoring matrices are
computed using a ‘position-specific’ method (Henikoff
and Henikoff, 1996), which adds 5N pseudocounts to
each position, where N is the number of distinct amino
acids observed in the position. We computed each scoring
matrix using the program PSSM, available from the
authors of BLOCKSPLUS, and then applied our methods
to the resulting scoring matrix.

For each scoring matrix, we computed the comple-
mentary CDFs under the independence, first-order, and
second-order assumptions. We then looked up the proba-
bility value corresponding to the 99.5th percentile score
listed in the BLOCKSPLUS database. For the second-
order assumption, we computed the complementary CDF
only for one-tenth of the scoring matrices, because the
computation time for all blocks would have required
several days. We compiled probability values separately
for the five databases contained within BLOCKSPLUS,
and computed statistics using both raw p values and their
logarithms, base 10.

The mean and standard deviation values are shown
in Table 1. The table shows that the 99.5th percentile
corresponds on average to a p value of 1.45 × 10−5 under
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Table 1. Probabilistic interpretations of empirically determined scores. The table shows the statistics of p values corresponding to the scores compiled in the
BLOCKSPLUS database. For details of the comparison, see the text and the legend to Figure 6. SD = standard deviation, log = log p values, base 10

Order Statistic BLOCKS DOMO PFAM PRINTS PRODOM Overall

0 Minimum 5.87 × 10−10 2.73 × 10−8 3.60 × 10−11 1.30 × 10−5 9.92 × 10−11 3.60 × 10−11

Maximum 2.60 × 10−5 2.63 × 10−5 2.50 × 10−5 2.08 × 10−5 9.62 × 10−5 9.62 × 10−5

Mean 1.22 × 10−5 1.20 × 10−5 1.25 × 10−5 1.71 × 10−5 1.19 × 10−5 1.45 × 10−5

SD 0.41 × 10−5 0.41 × 10−5 0.41 × 10−5 0.10 × 10−5 0.52 × 10−5 0.41 × 10−5

Mean(log) −4.96 −4.97 −4.96 −4.77 −4.98 −4.87
SD(log) 0.29 0.27 0.34 0.03 0.35 0.25

1 Minimum 6.27 × 10−10 4.11 × 10−8 3.90 × 10−11 1.30 × 10−5 1.06 × 10−10 3.90 × 10−11

Maximum 2.64 × 10−5 2.56 × 10−5 2.81 × 10−5 2.88 × 10−5 9.87 × 10−5 9.87 × 10−5

Mean 1.25 × 10−5 1.22 × 10−5 1.27 × 10−5 1.76 × 10−5 1.22 × 10−5 1.48 × 10−5

SD 0.41 × 10−5 0.41 × 10−5 0.41 × 10−5 0.15 × 10−5 0.52 × 10−5 0.42 × 10−5

Mean(log) −4.95 −4.96 −4.94 −4.76 −4.97 −4.86
SD(log) 0.29 0.26 0.33 0.04 0.34 0.24

2 Minimum 1.79 × 10−9 2.96 × 10−6 2.28 × 10−6 1.40 × 10−5 5.95 × 10−6 1.79 × 10−9

Maximum 2.24 × 10−5 2.37 × 10−5 2.63 × 10−5 4.15 × 10−5 2.02 × 10−5 4.15 × 10−5

Mean 1.28 × 10−5 1.22 × 10−5 1.35 × 10−5 1.81 × 10−5 1.31 × 10−5 1.53 × 10−5

SD 0.42 × 10−5 0.39 × 10−5 0.40 × 10−5 0.23 × 10−5 0.33 × 10−5 0.42 × 10−5

Mean(log) −4.95 −4.94 −4.90 −4.74 −4.90 −4.85
SD(log) 0.35 0.18 0.17 0.05 0.12 0.24
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Fig. 6. Probabilistic interpretations of empirically determined
scores. The graph shows the distribution of p values for scores
stored in the BLOCKSPLUS 11.0 database. The p values are plotted
on a logarithmic scale, so that the entire range of values could be
represented. These scores were determined empirically to represent
the 99.5th percentile over a sequence database. The p values are
determined by computing the complementary CDF, and correspond
to the probability of obtaining the score in a random segment.
The distribution is shown as a smoothed density function, using
a Gaussian window with a standard error of 0.03. Individual data
points are plotted on the horizontal axis.

the independence assumption, 1.48×10−5 under the first-
order assumption, and 1.53×10−5 under the second-order
assumption. On the log base 10 scale, the averages are
approximately −4.86, which corresponds to a p value of
1.38 × 10−5.

We show the density function for the first-order Markov
assumption in Figure 6. The density functions for the inde-
pendence assumption and second-order Markov assump-
tion (not shown) are very similar. The graph shows that
most of the p values lie in the range from −4.5 to −5.5.
However, there is a long tail towards the left, indicating
that a few empirically determined scores correspond to rel-
atively small p values.

Discussion
The architecture of the EMATRIX package differs in
four main ways from existing packages for sequence
analysis with scoring matrices. First, our approach de-
pends on probabilistic distributions of segmental scores,
such as the complementary CDF and quantile functions.
Quantile functions essentially provide a way to calibrate
scoring matrices. Scoring matrices have traditionally
been calibrated by empirical methods, by computing
the distribution of segmental scores against a real-world
sequence database. For example, the curators of the
BLOCKSPLUS database compile the distribution of the
maximum segmental scores for each sequence, and store
the 99.5th percentile score with each alignment block.
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However, a single score can provide only a binary test of
significance, whereas a stored quantile function permits a
p value to be assigned to each hit.

Second, our approach permits accurate comparisons
across scoring matrices. Score-based programs, such
as BLIMPS and BLOCKSEARCH, typically rank hits
according to their raw scores. However, a score from one
scoring matrix may not compare well with a score from
another scoring matrix. Raw scores depend heavily on
such variables as the width of scoring matrices and the
way in which they are scaled. Probability distributions
provide a uniform standard with which we can compare
hits across scoring matrices and interpret their statistical
significance.

Third, our approach computes probability and other
auxiliary information at compile time, rather than run
time. We perform the necessary analysis of each scoring
matrix when we convert a database of alignment blocks
into a database of scoring matrices. We therefore perform
most of the computing work in the pre-analysis stage,
and store computations that would otherwise have to
be performed for each sequence analysis. Thus, the
EMATRIX system involves a close linkage between
database construction and sequence analysis.

Finally, our approach introduces a trade-off between
speed and sensitivity, by allowing the user to specify a
desired p threshold in advance. Different thresholds can be
used for different searching tasks, ranging from analyses
of single sequences to entire genomes.

Previously, the fastest program for sequence analysis
using scoring matrices was the BLOCKSEARCH pro-
gram of Fuchs (1993, 1994). However, BLOCKSEARCH
can potentially sacrifice accuracy, because it may fail
to report some high-scoring segments. The program
BLOCKSEARCH depends on the observation that many
alignment blocks in BLOCKS contain singleton positions,
those with only a single amino acid. The program exploits
this observation by reporting only segments that contain
the conserved amino acid, thereby achieving high speed.
However, some segments may nevertheless achieve high
scores, even if they do not contain the conserved amino
acid, and these segments are not reported by BLOCK-
SEARCH. The technique of BLOCKSEARCH depends
on a particular characteristic of conservation in the
BLOCKS database, which derives from the particular way
in which it is generated (Smith et al., 1990). In contrast,
our techniques make no assumptions about the presence
of singleton positions or the method of scoring-matrix
construction, and are more broadly applicable.

The BLIMPS program also performs sequence analysis
by ranking segmental scores. This program maintains
segmental scores in an ordered fashion by using a skiplist
data structure (Pugh, 1990). The skiplist data structure is
a variant of a linked list that allows one to insert each

new entry in O(log L) time, where L is the length of
the linked list. Thus, for a total of N scoring matrices,
the N segmental scores can be maintained in a linked
list in O(N log N ) time. However, if we simply sort
the list of segmental scores at the end of the scoring
process, rather than maintaining an ordered list throughout
the scoring process, an implementation without skiplists
would also require O(N log N ) time. The EMATRIX-
SEARCH program essentially avoids the sorting issue
altogether by using significance filtering to limit the
number of hits that must be stored and ranked.

Sequence analysis using scoring matrices is becoming
increasingly popular. Recently, the program PSI-BLAST
(Altschul et al., 1997) has been developed to perform
a sequence similarity search with a scoring matrix as a
query. This program generates a scoring matrix through
several iterations, with the first iteration starting with a
single query sequence. The statistics of PSI-BLAST are
based on the underlying method of BLAST (Altschul
et al., 1990). The task that PSI-BLAST performs is
somewhat different from that performed by EMATRIX-
SEARCH, where we match a query sequence against a
database of known scoring matrices. Our analogue of PSI-
BLAST is EMATRIX-SCAN, which matches a scoring
matrix against a sequence database.

Virtually all sequence analysis programs must address
the problem of multiple inference, which arises because
numerous statistical tests must be performed during each
analysis. The more tests that are performed, the more
likely it is to achieve a low p score by chance. Thus, some
correction is often performed to account for the multiple
inferences performed. In our program, the p values
computed by our procedure refer to a single application
of a scoring matrix to a single segment, and therefore have
not yet been corrected for multiple inferences.

There exist several methods for handling the multiple
inference problem. One method is to compute an extreme
value distribution that gives the p value for the maximum
value from a series of segment scores (Castillo, 1988;
Goldstein and Waterman, 1994). We have elected not to
compute extreme value distributions, because we would
have to store several distributions in anticipation of the
different input sequence lengths. Moreover, the extreme
value distribution still does not account for the fact that
we are making inferences over multiple scoring matrices.

Another solution to the multiple inference problem is
to use a Bonferroni correction to replace the p threshold
p∗ by 1 − (1 − p∗)N , where N is the number of tests
performed. Here, for each sequence, the number of tests
is equal to B(L − J̄ + 1), where B is the number of
scoring matrices, L is the length of the given sequence,
and J̄ is the average width of the scoring matrices.
The Bonferroni correction could be applied easily in our
case by modifying the p threshold. In our experience,
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our segment-based p values correspond to biologically
meaningful results, given an appropriate threshold.

The EMATRIX package is an example of the pattern-
based approach to sequence analysis, which contrasts with
similarity search programs, such as FASTA (Pearson and
Lipman, 1988) or BLAST (Altschul et al., 1990). Specifi-
cally, EMATRIX uses patterns represented as scoring ma-
trices. In previous work, we have explored the use of other
pattern representations, such as discrete motifs. Our ap-
proach to discrete motifs is implemented in the EMOTIF
package for sequence analysis, which we have described
elsewhere (Nevill-Manning et al., 1997, 1998).

Hence, the EMATRIX package performs the same
functions as EMOTIF, except that it relies on scoring
matrices instead of discrete motifs. One advantage of
discrete motifs is that they can match segments at high
speed. We have found that EMOTIF achieves speeds of
approximately 1000 residues/s, using a database of 50 000
discrete motifs from BLOCKS, version 10.0. This speed
exceeds those obtained by using scoring matrices, unless
we specify extremely low p thresholds. However, because
discrete matches are binary, rather than probabilistic,
discrete motifs are typically less sensitive than scoring
matrices. The techniques developed in this paper therefore
make it possible to use scoring matrices at relatively
high speed, and to apply them to large-scale projects in
sequence analysis and annotation.
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Altschul,S.F., Madden,T.L., Schäffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-
BLAST: A new generation of protein database search programs.
Nucl. Acids Res., 25, 3389–3402.

Attwood,T.K. and Beck,M.E. (1994) PRINTS—A protein motif
fingerprint database. Prot. Eng., 7, 841–848.

Bairoch,A. and Apweiler,R. (1996) The SWISS-PROT protein
sequence data bank and its new supplement TREMBL. Nucl.
Acids Res., 24, 21–25.

Bateman,A., Birney,E., Durbin,R., Eddy,S.R., Finn,R.D. and
Sonnhammer,E.L.L. (1999) Pfam 3.1: 1313 multiple alignments
and profile HMMs match the majority of proteins. Nucl. Acids
Res., 27, 260–262.

Brown,M., Hughey,R., Krogh,A., Mian,I.S., Sjölander,K. and Haus-
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Sjölander,K., Karplus,K., Brown,M., Hughey,R., Krogh,A. and
Haussler,D. (1996) Dirichlet mixtures: A method for improved
detection of weak but significant protein sequence homology.
Comput. Appl. Biosci., 12, 327–345.

243



T.D.Wu et al.

Smith,H.O., Annau,T.M. and Chandrasegaran,S. (1990) Finding
sequence motifs in groups of functionally related proteins. Proc.
Natl Acad. Sci. USA, 87, 826–230.

Staden,R. (1989) Methods for calculating the probabilities of
finding patterns in sequences. Comput. Applic. Biosci., 5, 89–96.

Staden,R. (1990) Searching for patterns in protein and nucleic acid
sequences. Meth. Enzymol., 183, 193–211.

Stormo,G.D. and Hartzell III,G.W. (1989) Identifying protein-
binding sites from unaligned DNA fragments. Proc. Natl Acad.
Sci. USA, 86, 1183–1187.

Tatusov,R.L., Altschul,S.F. and Koonin,E.V. (1994) Detection of
conserved segments in proteins: Iterative scanning of sequence
databases with alignment blocks. Proc. Natl Acad. Sci. USA, 91,
12091–12095.

Wallace,J.C. and Henikoff,S. (1992) PATMAT: A searching and
extraction program for sequence, pattern and block queries and
databases. Comput. Appl. Biosci., 8, 249–254.

Wu,T.D., Nevill-Manning,C.C. and Brutlag,D.L. (1999) Minimal-
risk scoring matrices for sequence analysis. J. Comput. Biol., 6,
219–235.

244


